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We present the results of ground-state energies, radial distribution functions,

liquid structure functions and effective interactions for a 3He impurity in a 4He

background in two dimensions. The hypernetted-chain scheme for the system described

by a Jastrow-type wavefunction is used, taking into account the triplet correlations

-nd elementary diagrams up to fifth order. Solving the Euler-Lagrange equations for

the two-body distribution functions, which contain triplet correlation and elementary

diagrams, improves the results considerably. Furthermore, as a 3He impurity is

inserted into the 4He background, the ground-state energy increases, but the

-2 -2
equilibrium density decreases from 0.0350 A- to 0.0336 A- . The radial distribution

function is broadened, while its maximum is lowered and shifted to the right (the

direction of increasing radial distance) due to its larger zero-point energy, with

therefore less localization of the 3He particle. The results are compared with Monte

Carlo results and other studies.
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I. Introduction

In the past three decades there has been considerable interest in single-

component Bose-fluid I and binary boson mixtures2 at very low temperatures, such as

3
stable bulk spin-polarized hydrogen atom and its isotope. Among the Bose systems,

liquid 4He and 3He- 4He mixtures have been analyzed successfully by introducing a

Jastrow-type wavefunction. In the investigation of ground states, the Green's

4-5 0 6-7
function Monte Carlo (GFMC) technique, paired-phoncn analysis -. , -. ag

correlation approximation (ACA)
8 and hypernetted-chain (HNC) approximation scheme

9 1 0

provide powerful tools in both two and three dimensions. First, three calculations

give the exact ground- and excited-state energies, but less information about the

optimized correlation function and other quantities which depend on the long-range

behavior, although much experimental data about them have been reported. However, in

spite of its weakness in the calculation of the ground-state energy, the HNC

approximation can be improved by including the triplet correlation function and some

11.I 12-17
elementary diagrams in the energy and Euler-Lagrange equations. Woo and

Coldwell12"13 have considered the wavefunction consisting of the Jastrow function

multiplied by a three-particle function and obtained the improved energy and liquid

structure function. Recently, Fabrocini and Polls 1 6 have extended this idea to the

ideal boson 3He- 4He mixture in the zero 3He concentration limit.

In the two-dimensional case, Miller and Woo 1 8 have studied the ground state of a

4He monolayer assuming no significant modifications by the existence of a substrate

7
in the mobile limit. Chang has evaluated the ground-state energy and liquid

structure function using the optimal Jastrow function determined from a self-

i10
consistent PPA, and Hatzikonstantinou has also investigated ground-state properties

by using a Jastrow-type wavefunction and solving a Euler-Lagrange equation within the

HNC approximation without a three-particle factor.
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The main purpose of the present paper is to evaluate the ground-state properties

of two-dimensional 4He and 3He-4He mixtures in the zero 3He concentration limit by

optimizing a Jastrow-type wavefunction and solving the Euler-Lagrange equations

within the HNC approximation, including a triplet correlation function and elementary

diagrams up to fifth order.

In Sec. II, we summarize the construction of the Euler-Lagrange equations for

zero 3He concentration obtained from the energy minimization condition. The Jastrow

wavefunction consisting of the product of the two ind three-body correlation factors

and the Jackson and Feenberg energy form are adopted. We apply our results to the

4He monolayer and the 3He- 4He mixture in Sec. III to obtain the ground-state

energies, radial distribution functions, liquid structure functions and the effective

potential, assuming a Lennard-Jones 6-12 potential. The improvements in the ground-

state energies and other quantities are also discussed. In Sec. IV, we make

conclusions.

II. Euler-Lagrange Equation in the Zero-Concentration Limit

In this section we consider a homogeneous binary boson mixture, which can be

described the the Hamiltonian

N= N

2 2t

2m -i i I

N NB  NN

+ V Wa (rij) + V A6 (r)ij + V a(rij) (2.1)

i<j i<j i-l
j-1
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Here, the first two terms are kinetic energies of components a and 6, respectively,

and V (r) is the pairwise interaction potential for the three different pairs of

particles. We assume that the total number of particles in an area A is N - N + N .

We choose the Jastrow-type wavefunction in terms of two- and three-particle

correlation functions of the form

NaNf

- -. (2)- (2) NN0 2
T(rai.., N: , ..... r N ) - faa (r ij ) i f I f( (ij)

a j6 i<j i~j -1
j-l

II (3 )- -() - - -(3) - - - (3) - - -

(rrr I f 6(r ,rk) 1 frk )  f() rk)
i<j<k.. i<j<k J i<j <k i<j<k ,a

exp( 21  uaa(Ira i - r a.j) + u.(r P i - r,j

i<j i<j

+ ) u(Ir . - rj))exp(l[ ) u (r ,'r .,rk)

i<j i<j <k

+ u r ri,j"fk) + , uaPf(lrairaj' rk)

i<j <k i<j <k

+ r r rk) (2.2)

i<j <-C

where uap(r) is the two-body correlation function which satisfies the boundary

conditions

lim u (r)- =

r-.O
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lim u a(r) - , (2.3)

and u a(r) is the three-body correlation factor. The two-body distribution function

can be defined as

N (N - 6 ) dr(i i ) q* '
gaBCr) - p * (2.4)

a J6dr1 ... dr ir i

where dr(i ,i) denotes dr l...d N with the exclusion of dr. and dr. , and p. - N /A

(2)
is the partial density of component a. The radial distribution function g(2 (r) must

also satisfy the conditions

Ii,- I[gap (r) -I] - 0

r-

p f d2 r [g a(r) - 1] + 6 a 0 (2.5)

Defining x - pa/p as the concentration of component a, where p - (N a + N)/A is the

total density, we can express the energy per particle of the system as

(V -C  (3 )

E-E ( ( (2.6)

with

E x(2 )  x2E + 2xxE +xE (2.7)
aaa ap 0 0,6

and
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E -(3) _ x3E + 3[x x E + x x 2E + x3E (2.8)
a aaa a A ar a A ific 0

The two- and three-body energies are

(2) d2 - g(2 )v

r 2A (r) , (2 9)

with the effective interaction

-(r) V () V2u (r)

A ) ar)- 4m

- (m + 1. (2.10)

and

p-6p r , r Y ai)VY (r) (2.11)

with

2V 2 2 V2
V-(r)- -M -MA ( r) r r Y (2.12)

where g (r r I) is the three-body distribution function. This is written as

A- -4 ()g 2 )( (2) (2)ga,-y(r, 6'r ap(2) ap) g7: (r -a) g( )A(r -Y)

(  )  -(r r)g(r)

x ff(3(r ,r)rY )l e (2.13)
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where A(rr ,r') is the sum of the contributions of all the Abe terms.

In order to establish a relation between g(2) (r) and f(2 )(r) , we introduce the
I1

HNC approximation, which consists of 
the equation

(2 f(2) 2

(2)(r) [f ( (r)] 2exp[C (r) + T (r) + E (r)] (2.14)

where

(r) pi f d-i [g(2) (r) - 1 C,,(r ) ] [ g ( ) (r) 1] , (2.15)

i

T a(r) is the integral of the triplet function

(2 ) (g 2 )(r )([ dr k) l (2.16)P (r) - Pi fdr i I[ga (r ij) ga (r i) (k)(2.16

i

and E (r) iq the q,,m of all thp Plementpry Aiagrams. Rewriting Eq. (2.9) and taking

Co (r) in momentum space, we get

(2) 1 2d )(r)V (r) _g2 r 2- (2), ,2, (2),
2 L g' Jf cz,6a () 8mf ap f ap .1baCX'

2 6 a,6 2 2
t dkk{S (k)(S (k) - 3]

8m f (2n)2pjPf a k  Sp

cS (2)) p2

S -(k)[1l aB (k)] 2 (2) 2
+ -(k) t 2 d2 r g (r)V [Te (r) + E (r)] , (2.17)

D(k) - 8m a

where S a(k) is the liquid structure function of the form

I II
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S #(k) - 6 a# + 21rp f dr r [go, (r) - 1] J0 (kr) , (2.18)

D(k) - SS11 22 - 2 and a P 7. Here J0 (kr) is the zeroth-order Bessel function. To

minimize the energy, we must calculate the variational equations 6E/sf(2)(r) - 0 and

SE/f (3)(r) - 0 and solve the resultant Euler-Lagrange equations. In the presence of

triplet correlations this is very complicated. To solve this problem we take the

limit of zero concentration of component a and assume that f(3)(r) is fixed for all

the triplets. Minimizing the energy, we finally get the Euler-Lagrange equations

V2 V2 + V (r) + W 2(r) + W2'(r) + W E (r)][ g 2 (r)] 0 (2.19)"m a:2Q Q 2 ga2 () "-0 ,( .9

where a - 1,2. Here W 2(r), WT 2 (r) and WE2 (r) are the induced potentials due to two-

body correlations, triplet correlations and elementary diagrams, respectively.

W 2 (r) is expressed in momentum space as

wO2 (k)l - -h2 k2 S 12($22 1) (2-ImS +1

~22

0 ( 2k2 (S2 2 - 1)2 (2S2 2 + 1)1422(k) - " (2.20)
4m2P2  S2

22

and

W 2 (r) - 2 V2T (r) (2.21)
2 8ma2 a2

WE2 (r) - ALV 2E (r) (2.22)- 8m a2 (
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Here we ass-ii.. E1 2 (r) - E2 1 (r). We may rewrite Eq. (2.6) for slight changes in xI as

E(2) _(2) + 2x (E(2) 2 2(2) X 2) _ 2E(2) + E(2)22 1 12  -22 + 11 -12 22 (2.23)

Assuming that there is an impurity in the mixture, then x would be I/N, and

approximately to order 1/N we can minimize E(2 ) through minimization of E2 2 (r', that
(2)2

is (2)(r) can be estimated consecutively.

From the Euler-Lagrange equations we can construct the n-th step iteration
(2)() ()(2)(r Thnb

scheme and find g )n (r)- g 2  (r) + 6g (2) r) for a given g2 (r). Then by
,"ga 2 ,n "2,n

means of the convolution theorem, the Euler-Lagrange equations can be converted to

2 m2(V W 0 W T W E 6 (2)(
2 2 a2,n a2,n a2,n )°2,n

2 ma 2 W 0  T  WE (2)r
+2 (Va2 o2,n a2,n a2,n)]ga2,n

(2) 2P - (2)1 r (2) 11
+g2(r) d2 a'2,n ( r  r')g (r)2, n(r) - 0 (2.24)

where W' is given by
a 2

0' -2 - 1 2 + (1 -I 1 -)S

- k12w 1 2 2 22 2m 1 2 m2 )S 2 2

22

w -O' k 2(S2 3 )

W22 22 (2.25)

2S22
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This variational calculation consists of two parts: (a) we consider a system of a

background component and a trial wavefunction of the form of Eq. (2.2) and determine

(2) (r) variationally, and (b) we replace the background system with an impurity and822

introduce the trial wavefunction

n-i n-I

~r( , ... r nln) - exp{t 2 u2 2 (rij) + 2 u 1 2 (rkn)

i<j k-i

n-i n-i

x exp)[ u 2 2 -(ri, rrk) + 2 u2 2 1 (rir.,r)]} (2.26)

i<j<k i<j=k

Through step (b), (2) (r) can be determined variationally.Throgh tep b),g12

Equation (2.24) represents a set of integro-differential equations. Under the

assumption that Sg( 2 (r) vanishes outside some radius R, Eq. (2.24) can be replaced
a2

by a finite sum over a set of equally-spaced points in coordinate space, and the

Laplaian erm or 6(2).
Laplacian term for 6g (r) can also be expressed by finite differences. Then we get

a2

a set of inhomogeneous linear equations, which can be written in matrix form and

diagonalized by the standard Gauss elimination technique. By making a good choice

for the initial g(2) (r), the rate of convergence will be rapid, so that the optimized

distribution function can be readily obtained.

III. Numerical Results and Discussion

In this section we apply the results obtained in previous sections to two-

dimensional 3He and (Bose) 3He- 4He mixtures in the zero 3He concentration limit. To

be realistic in the two-dimensional mixture, it is necessary to consider the 3He

coverage of a few atomic layers on the 4He background.1 9 At T - 0 K a 3He particle

behaves nearly like 4 He particle, and thus we assume that the potential V a(r)
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appearing in the Hamiltonian (Eq. (2.1)] are all of the form of a Lennard-Jones

potential given as

V (r) - 4e[()12 . a)6 (3.1)
al r r

with c - 10.22 K and a - 2.556 A. As an initial trial guess for g()(r), we adopt
(2)2

the results for g(2) (r) and S22 (k) obtained from the Jastrow wavefunction, which aret222 1

only known for r : 5 A and k : 5 A- , such that the short-range behavior of g(r) at a

density of 0.03 A"2 coincides with the results obtained from the PPA. 7  The initial

form of g2) (r) is evaluated using an iterative scheme, 0 since the long-range

behavior of g(r) depends on the value of S(k) for small k, and the exact value of

S(k) for k Z 5A-I depends on the value of g(r) for small r. The initial value of
(2) . (2)(r

g12 (r) is determined by optimizing g22 (r).

For the triplet correlation functions we assume that f(3)(r) has the same form

for all the triplets and choose the parametrized form given as

()+ +2 A (3.2
f (r1, 2,r 3) - exp[2 A (rij )(rik)r rij rik] (3.2)

cyclic

with

r(r) - F(r)exp([(r-r )/w] 2 (3.3)

F(r : b) - [(r - rb)/rb] , F(r > rb) - 0

A A

Here rij and rik are unit vectors in the direction of radial vectors r and rik.
'3 i ij k

respectively. We choose the parameters rb, rt, A and w as those which are adopted in
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the three-dimensional case, and note that the energies and radial distribution

functions are not significantly affected by the choice of the above parameters.

Taking the terms of elementary diagrams up to fifth order with the triplet

correlation factor and approximating E1 2 (r) by E2 2 (r), the calculation of the

integro-differential equation [Eq. (2.24)) is carried out by using the Gauss

elimination technique until r - 20 A.

The ground-state energies per particle for pure liquid 4He and 3He- 4He mixtures

are listed in Table 1. By considering the triplet correlation factor and elementary

diagrams, the energies are lowered by about 21-96% compared with those considering

the two-body factor only, and the equilibrium density increases for the pure case but

decreases for the mixture case. The changes by the triplet correlation and

elementary diagrams are shown in Figure 1. For the pure case (solid line), the

ground-state energy is -0.646 K at the equilibrium density of p - 0.0350 A and

18 .20

similar to the results of the BBGKY, the molecular dynamics and the Monte Carlo
4

studies. For the mixture case (dashed line), the equilibrium density is 0.0336 A-2

with a ground-state energy -0.542 K. The rate of drifts in energies are similar to

that in the three-dimensional system. Moreover, we can view the chemical potential

of 3He at T - 0 K as independent of the density of the 4He background due to complete

phase separation.
8

We note that one of us (CIU) has evaluated the ground-state energies of one- and

two-dimensional Bose liquids 2 1 and charged boson systems using ring diagrams2 2 and

23
the self-consistent field approximation. In these results the ground-state

energies of one- and two-dimensional Bose fluids consist of repulsive and attractive

parts with the adoption of a soft potential with a Lennard-Jones tail. For our

current two-dimensional boson system, the ground-state energy is proportional to

R " 2 / 3 with an additive positive constant, where R is the ratio of the meana a
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separation between particles to the Bohr radius within the self-consistent

approximation. This result is different from that of the ring diagram approximation,

which does not include an additive positive constant.

Figure 2 illustrates the optimal radial distributions of g( 2 (r) (dashed line)

and (2) (r) (solid line) at the respective equilibrium density, while their numerical

values at various density are listed in Table 2. As the density increases, the

maximum values of g(2) (r) and g(2) (r) increase. At the equilibrium density the
22 12

maximum position of g 2 (r) shifts to the right (direction of increasing radial122

distance) in comparison with the fixed g2) (r). This behavior is due to the fact

that the volume swept by 3He is larger than that by 4He. The maximum value of

( r) is smaller than that of g 2 ) (r) and broadened around the maximum point12 2

because of less localization of the 3He impurity with a larger zero-point energy. In

this sense the behavior of g(2) (r) agrees with the three-dimensional case. With(2)

the consideration of the triplet correlation function, the maxima of g1 2 (r) and(2)
(2) (r) increase but are hardly affected by elementary diagrams. However, the

ground-state energies are lowered not only by triplet factors but by elementary

diagrams. We note that the optimized radial distribution functions 2 1 ,2 2 ,2 5 of one-,

-2 -3 -4
two- and three-dimensional hard-sphere Bose systems decrease as r , r and r ,

respectively, at short distances, while at long distances they oscillate and tend to

go to unity as r - -, which is due to the contribution from the core part of the soft

potential. These three proportionalities represent the main long-distance behaviors

of phonons in each dimensional Bose liquid.

Figure 3 shows the optimized liquid structure functions at various densities.

The initial slope decreases, which implies a decrease of sound velocity, but the

maximum increases and shifts to the right with increasing density. A comparison

between S1 2 (k) (solid line) and S2 2(k) - 1 (dashed line) at equilibrium density is

shown in Figure 4. The addition of the impurity 3He leads to a decrease of the
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maximum and shift of the maximum position to the right in k-space. This behavior

obtained is as expected in a scattering problem and agrees with that of the three-
25

dimensional case except in the region of k - 0.

In Figure 5 we plot the bare Lennard-Jones potential V. , the induced potential

Wl2(r) (V ind) and the effective potential V eff  According to Table 3, we observe for

the effective potential that as the density increases, its hard core radius (Veff -

0) decreases and potential becomes deeper, while the repulsive barrier height grows

at about the same position.

IV. Conclusions

We have investigated the ground-state properties and behaviors of the 3He- 4He

system. The introduction of the triplet correlation and elementary diagrams up to

fifth order in the HNC approximation leads to successful improvement in the ground-

state energy and optimized two-body distribution functions. Furthermore, the triplet

correlation factor contributes to the change of both energy and the distribution

function, while elementary diagrams do not change the distribution function. By

addition of an impurity 3He into a 4He background, the energy increases, the

distribution function moves to the right, and its maximum decreases and is broadened

around the maximum position, due to larger zero-point energy and less localization of

the 3He particle.
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Table 1. Ground-state energies E0 due to the two-body factor only (2), two- and

three-body factors (2+3) and two- and three-body factors plus

elementary diagrams (tot) for the pure and mixture cases at various

densities.

P E0,mix(2) E 0mix(2+3) E ,mix (tot) E ,pure(2) E o,pure(2+3) Eo,pure(tot)

(A-) (K) (K) (K) (K) (K) (K)

0.0250 -0.28 -0.38 -0.45 -0.39 -0.45 -0.50

0.0275 -0.30 -0.40 -0.48 -0.44 -0.48 -0.55

0.0300 -0.32 -0.43 -0.50 -0.48 -0.53 -0.58

0.0325 -0.35 -0.45 -0.53 -0.46 -0.56 -0.62

0.0350 -0.38 -0.47 -0.54 -0.46 -0.59 -0.65

0.0375 -0.35 -0.45 -0.52 -0.43 -0.58 -0.63

0.0400 -0.33 -0.44 -0.51 -0.40 -0.57 -0.61
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Table 2. Radial distribution functions at various densities.

p 0.02- A 2 p - 0.030 A 2  p - 0.035 2

g2 2 (r) g1 2 (r) g2 2 (r) g1 2 (r) g2 2 (r) g1 2 (r)

2.0 0.000 0.000 0.000 0.000 0.000 0.000

2.2 0.010 0.010 0.010 0.011 0.010 0.011

2.4 0.067 0.065 0.070 0.066 0.071 0.069

2.6 0.208 0.207 0.211 0.209 0.215 0.209

2.8 0.409 0.404 0.418 0.408 0.425 u.413

3.0 0.628 0.608 0.640 0.621 0.656 0.630

3.2 0.835 0.801 0.839 0.815 0.841 0.828

3.4 0.988 0.960 0.992 0.963 0.997 0.970

3.6 1.086 1.055 1.095 1.066 1.101 1.075

3.8 1.140 1.109 1.159 1.117 1.160 1.126

4.0 1.188 1.140 1.189 1.155 1.198 1.160

4.2 1.181 1.145 1.182 1.158 1.190 1.162

4.4 1.169 1.131 1.168 1.135 1.173 1.140

4.6 1.121 1.095 1.121 1.099 1.123 1.103

4.8 1.084 1.077 1.084 1.078 1.085 1.075

5.0 1.050 1.048 1.043 1.043 1.043 1.040

5.2 1.015 1.019 1.015 1.018 1.010 1.011

5.4 0.990 0.996 0.987 0.992 0.986 0.990

5.6 0.972 0.978 0.969 0.974 0.967 0.972

5.8 0.957 0.963 0.956 0.961 0.955 0.959

6.0 0.951 0.956 0.948 0.953 0.947 0.952
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Table 3. Induced potentials Vin d and effective potentials Vef f at

various densities.

p - 0.025 A
2 p - 0.03 p - 0.35 A-

2

r(A) Vind(K) Veff(K) Vin d  Vef f  Vin d  Vef f

2.4 -1.056 26.332 -1.625 25.763 -2.401 24.987

2.6 -0.756 -4.347 -1.162 -4.754 -1.752 -5.344

2.8 -0.480 -10.447 -0.942 -10.709 -1.159 -11.126

3.0 -0.226 -9.882 -0.367 -10.023 -0.623 -10.279

3.2 0.009 -7.850 -0.027 -7.887 -0.141 -8.000

3.4 0.231 -5.816 0.290 -5.758 0.302 -5.744

3.6 0.437 -4.129 0.579 -3.987 0.702 -3.863

3.8 0.607 -2.828 0.812 -2.624 1.024 -2.412

4.0 0.757 -1.828 1.026 -1.568 1.315 -1.279

4.2 0.950 -1.021 1.279 -0.692 1.643 -0.329

4.4 1.216 -0.294 1.637 0.126 2.086 0.575

4.6 1.546 0.378 2.052 0.884 2.588 1.421

4.8 1.828 0.917 2.364 1.453 2.964 2.053

5.0 1.885 1.168 2.359 1.642 2.960 2.244

5.2 1.625 1.057 1.968 1.490 2.501 1.932

5.4 1.123 0.669 1.328 0.874 1.745 1.291

5.6 0.576 0.210 0.694 0.328 0.995 0.629

5.8 0.154 -0.143 0.249 -0.048 0.466 0.168

6.0 -0.088 -0.331 -0.022 -0.221 0.191 -0.052
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Figure Captions

I. Ground-state energies of the pure 4He system (solid line) and (Bose)3 He- He

mixture in the impurity 3He limit (dashed line) as a function of density. E(2),

E(2+3) and E(tot) represent the energy containing the two-body correlation factor

only, energy by two- and three-body factors, and total energy by the above

factors plus elementary diagrams, respectively.

2. Optimized radial distribution functionsg 2 (r) (solid line) and g 2 (r) (dashed

line) at equilibrium density.

3. Optimized liquid structure function S12(k) at various densities.

4. Optimized liquid structure function S1 2 (k) (solid line) and S2 2 (k)-i (dashed

line) at the equilibrium density.

5. Bare Lennard-Jones potential (VLj), induced potential (Vind) and effective

potential (Veff) at the equilibrium density.
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